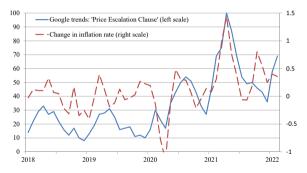
# Shock Transmissions in Different Inflation Regimes


#### Sarah Arndt and Zeno Enders



#### September 2023 - VfS Regensburg

## Do transmission dynamics change with inflation?

Google Trends Index: 'Price escalation clause'



#### **Bundesbank Online Panel:**

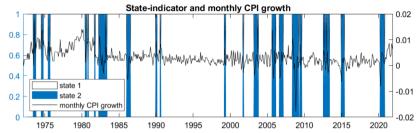
**34%** of sampled German firms report to use price escalation clauses from 2021 onward vs. **17%** before 2021 Policy makers see major changes in inflation dynamics

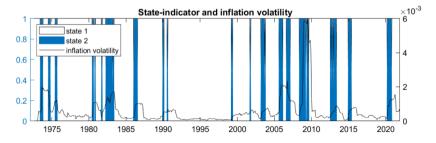
# Philip Lane (November 2022):

# "Since the beginning of this year, many contacts also told us that prices would be increased more frequently."

Introduction

# **Inflation Regimes**


## Determine inflation regimes via Markov-switching AR


*Aim:* find different inflation dynamics without exogenously conditioning on specific variables

$$\Delta CPI_{t} = \begin{cases} \nu_{1} + A_{1,1} \Delta CPI_{t-1} + \dots + A_{1,4} \Delta CPI_{t-4} + e_{1,t} & \text{if} \quad s_{t} = 1\\ \nu_{2} + A_{2,1} \Delta CPI_{t-1} + \dots + A_{2,4} \Delta CPI_{t-4} + e_{2,t} & \text{if} \quad s_{t} = 2 \end{cases}$$

#### $\Delta CPI_t$ : CPI in sa mom log differences

# States depend on inflation volatility





Introduction

Shock Effects

Results

Conclusion

 $\rightarrow$  More evidence Appendix 4/15

# **Shock Effects**

## Interact fitted values $\hat{x}_t$ with state-indicator $H_t$

First stage:

$$x_t = \mu_{FS} + \beta_{FS} Z_t + \sum_{l=1}^n \delta_{FS,l}^T W_{t-l} + \epsilon_t$$
(1)

Second stage:

$$y_{t+h} = \mu_{2,h} + H_t(\beta_{2,h}^1 \hat{x}_t + \sum_{l=1}^n \delta_{2,l}^1 W_{t-l}) + (1 - H_t)(\beta_{2,h}^2 \hat{x}_t + \sum_{l=1}^n \delta_{2,l}^2 W_{t-l}) + u_{t+h}$$
(2)

Introduction

Shock Effects

Results

#### **Dataset:** CPI, IP & PPI data for stages of production (BLS)

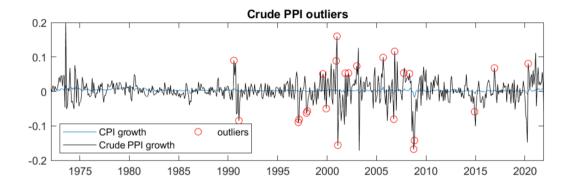
#### Stages: Crude, Intermediate, Finished goods PPI Crude, Primary/semi-finished, Finished goods IP

**Coverage:** USA, monthly, 1972M1 - 2021M12

#### **Controls:** $W_t = 8$ lags of: $y_t$ , $Z_t$ , $\Delta IP_t$ , $\Delta CPI_t$ and $\Delta PPI_t$ of previous & subsequent stage

 $\rightarrow$  More details

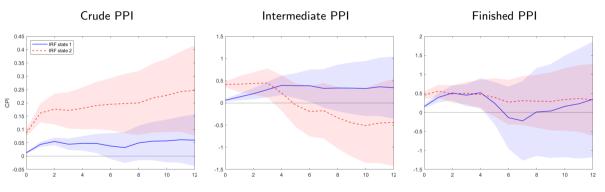
Introduction


Shock Effects

Result

Conclusion

Appendix 6/15


# Identify PPI shocks with exceptional data movements

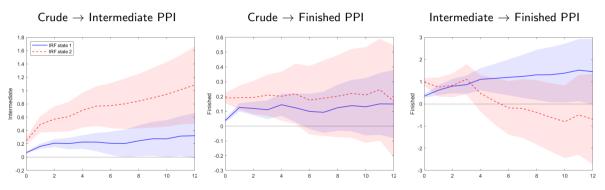


 $\rightarrow$  Intermediate and Finished outliers

# **Results**

# State-dependent effects of PPI shocks on CPI




 $\rightarrow \mathsf{IP} \text{ response}$ 

Inflation Regimes

Shock Effects

Results

Lagging price changes in downstream production stages



Introduction

Inflation Regimes

Shock Effects

Results

Conclusion

Appendix 9/15

# **Monetary Policy**

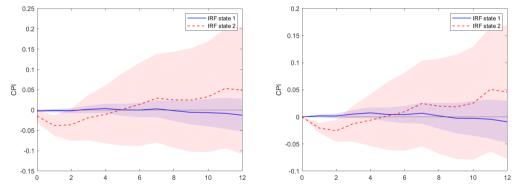
Using Jarociński & Karadi (2020) monetary policy shocks

$$y_{t+h} = \mu_h + H_t(\beta_h^1 shock_t + \sum_{l=1}^n \delta_l^1 W_{t-l})$$
$$+ (1 - H_t)(\beta_h^2 shock_t + \sum_{l=1}^n \delta_l^2 W_{t-l}) + u_{t+h}$$

controls: 8 lags of IP, CPI, and real exchange rate

Introduction

Inflation Regimes

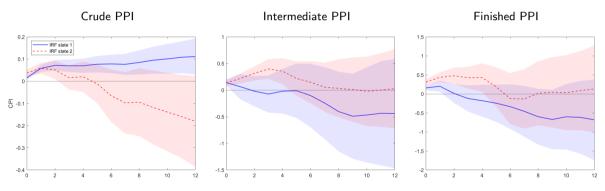

Shock Effects

Results

## State-dependent effect of an interest-rate increase

Controls w/  $IP_t \& CPI_t$ 

Controls w/o  $IP_t \& CPI_t$ 




 $\rightarrow$  Response of FFR

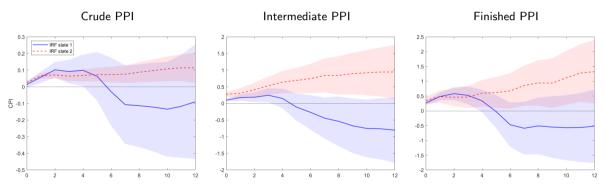
# Robustness

#### Alternative 1: regimes depend on level of CPI inflation

Regime 1/2: CPI inflation below/above average



Introduction


Inflation Regimes

Shock Effects

Results

#### Alternative 2: regimes depend on change in Crude inflation

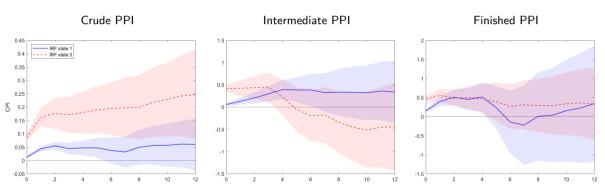
Regime 1/2: absolute change in Crude inflation below/above average



Introduction

Inflation Regimes

Shock Effects


Results

Conclusion

Appendix 13/15

#### Alternative 3: extended sample length

1948M10 - 2021M12, non-specific IP



#### $\rightarrow$ More robustness checks

Introduction

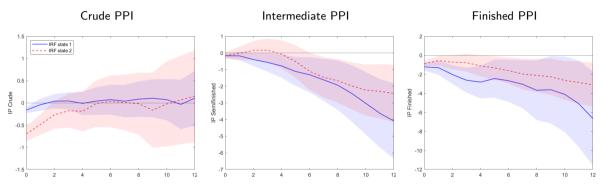
Inflation Regimes

Shock Effects

Results

Conclusion

Appendix 14/15


### Conclusion

# We find inflation volatility to change effects of supply shocks

 $\rightarrow$  Stronger responses in times of high inflation volatility

# Appendix

# State-dependent effects of PPI shocks on IP



 $\rightarrow \mathsf{Back}$ 

Introduction

Inflation Regimes

Shock Effects

Results

### PPI data details

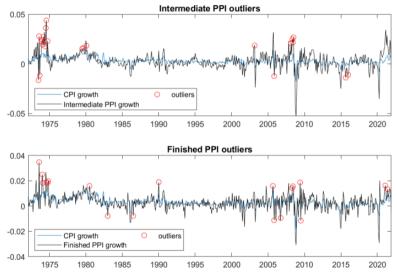

| SOP Code | Title                                                | FD-ID Code | Title                                          |
|----------|------------------------------------------------------|------------|------------------------------------------------|
| SOP1000  | Crude materials                                      | ID62       | Unprocessed goods for in-<br>termediate demand |
| SOP2000  | Intermediate materials, sup-<br>plies and components | ID61       | Processed goods for inter-<br>mediate demand   |
| SOP3000  | Finished goods                                       | FD49207    | Finished goods                                 |

Table: Variable description of Crude (SOP1000), Intermediate (SOP2000) and Finished (SOP3000) PPI. More information available here:

https://www.bls.gov/ppi/fd-id/ppi-stage-of-processing-to-final-demand-intermediat e-demand-aggregation-system-index-concordance-table.htm

 $\rightarrow \mathsf{Back}$ 

### Outlier in Intermediate & Finished PPI



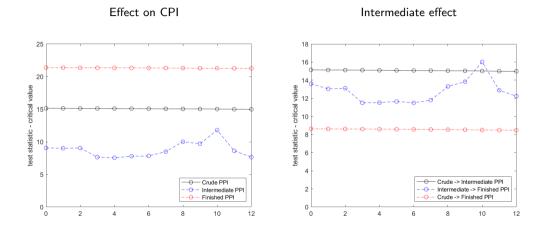
ightarrow Back

Introduction

Shock Effects

Results

# States depend on inflation volatility


$$Pr(State_t) = c + \sum_{i=0}^{t=10} vol_{t-i}.$$

|                              | β     | p-value |              | β    | p-value |  |  |
|------------------------------|-------|---------|--------------|------|---------|--|--|
| const.                       | -0.41 | 0.00    | $vol_{t-5}$  | 0.04 | 0.03    |  |  |
| volt                         | 0.44  | 0.00    | $vol_{t-6}$  | 0.03 | 0.07    |  |  |
| $\mathit{vol}_{t-1}$         | 0.30  | 0.00    | $vol_{t-7}$  | 0.05 | 0.01    |  |  |
| $vol_{t-2}$                  | 0.18  | 0.00    | $vol_{t-8}$  | 0.05 | 0.01    |  |  |
| $vol_{t-3}$                  | 0.13  | 0.00    | $vol_{t-9}$  | 0.03 | 0.07    |  |  |
| $vol_{t-4}$                  | 0.07  | 0.00    | $vol_{t-10}$ | 0.03 | 0.14    |  |  |
| $R^2$ (and adj. $R^2$ )=0.67 |       |         |              |      |         |  |  |

ightarrow Back

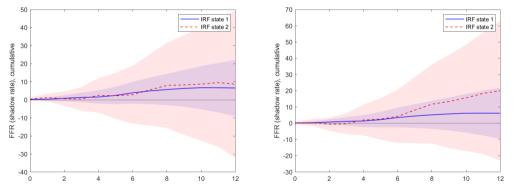
Introduction

### Weak instrument test (Lewis & Mertens, 2022)



Introduction

Inflation Regimes


Shock Effects

Results

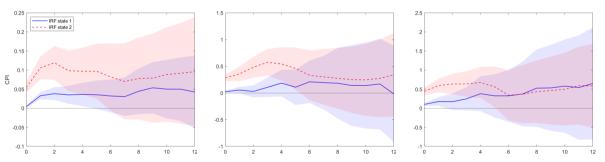
#### Effect of an interest-rate increase on the shadow rate

Controls w/ IP<sub>t</sub> & CPI<sub>t</sub>





 $\rightarrow \mathsf{Back}$ 


### Regime definition via inflation volatility

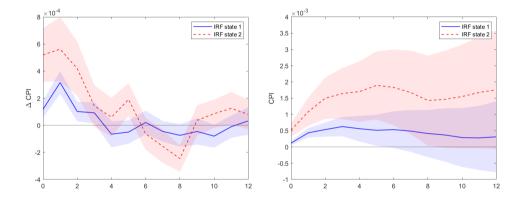
Regime 1/2: Crude inflation volatility below/above average

Crude PPI

Intermediate PPI






 $\rightarrow \mathsf{Back}$ 

Introduction

Shock Effects

Results

### Effect of an oil-price shock on monthly CPI inflation



ightarrow Back